
Download free eBooks at bookboon.com

Prolog Techniques

141

Appendix A: Solutions of Selected Exercises

Appendix A

Solutions of Selected Exercises

A.1 Chapter 1 Exercises

All Prolog source code for Chap. 1 is available in the file accumulator.pl.

Exercise 1.1. Define from to/3 and its auxiliary from to acc/3 by (P-A.1).

Prolog Code P-A.1: Definition of from to/3

1 from_to(M,N,L) :- (var(L); is_list(L)), % clause 0

2 integer(M), %

3 integer(N), %

4 M =< N, %

5 from_to_acc(M,[N],L), !. %

6 from_to(H,N,[H|T]) :- last(N,[H|T]), !, % clause 1

7 H =< N. %

8 from_to_acc(H,[H|T],[H|T]). % clause 2

9 from_to_acc(M,[H|T],L) :- NewHead is H - 1, !, % clause 3

10 from_to_acc(M,[NewHead,H|T],L). %

The annotated version of the hand computations from Fig. 1.4 is shown in Fig. A.1. The idea suggested by

from to(6,9,L)
0©

�� from to acc(6,[9],L)
3©

��

from to acc(6,[8,9],L)
3©

�� from to acc(6,[7,8,9],L)
3©

��

from to acc(6,[6,7,8,9],L)
2©

�� L = [6,7,8,9]
0©

�� success

Figure A.1: Annotated Hand Computations for from to/3

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

142

Appendix A: Solutions of Selected Exercises

the hand computations is clearly reflected in the clauses 0, 2 and 3. It is instructive to consider the unexpected
consequences of a slight (and perhaps innocent looking) change to clause 0. If we redefine clause 0 as shown
here,

from_to(M,N,L) :- var(L), % new clause 0

integer(M), %

integer(N), %

M =< N, %

from_to_acc(M,[N],L), !. %

then the predicate’s pattern matching functionality will be corrupted:

?- from to(6,9,[, ,E|]).

E = 9

(The third entry of the list [6,7,8,9] is clearly not 9 .) To explain this, we note that Prolog first tries the
modified clause 0 which will fail since [, ,E|] is not a variable but a compound term.1

?- var([, ,E|]).

No

1Lists are compound terms with the functor ‘. ’ (dot). More on this will be found in Sect. 2.2.1.

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Prolog Techniques

143

Appendix A: Solutions of Selected Exercises

Next, clause 1 is tried, which then succeeds as indicated by the query below.

?- (6,9,[, ,E|]) = (H,N,[H|T]), last(N,[H|T]), !, H =< N.

E = 9

H = 6

N = 9

T = [G269, 9]

Why? Well, for the first goal of this query to succeed, [H|T] has to have at least three entries, requiring T be
of length at least two. The second goal then succeeds with T as a two-element list (whose first entry is a system
chosen internal variable):

?- last(9,[6|T]). 2

T = [9] ;

T = [G269, 9] ;

T = [G269, G272, 9] ;

...

Therefore, [H|T] will be unified with [6, G269,9] . Now, the unification [, ,E|] = [H|T] (still in force
from the first goal) requires that E be unified with the third entry of [6, G269,9] , i.e. with 9 .

We note in passing that the predicate numlist/3 in SWI-Prolog, Version 5.2.7, has almost the same function-
ality as our from to/3 . (The instantiation pattern numlist(-Low,-High,+List) has not been implemented
there.)

Exercise 1.2. The new version, nums/2 , is defined in (P-A.2).

Prolog Code P-A.2: Definition of nums/2

1 nums(Atom,N) :- atom_codes(Atom,Values), % clause 0

2 nums([47|Values],0,N), !. %

3 nums([],N,N). % clause 1

4 nums([_],N,N). % clause 2

5 nums([H,E|T],Acc,N) :- not(digit(H)), digit(E), % clause 3

6 NewAcc is Acc + 1, %

7 !, nums([E|T],NewAcc,N). %

8 nums([_,E|T],Acc,N) :- nums([E|T],Acc,N). % clause 4

• We prefix in clause 0 with the ASCII Values with ‘47’, an arbitrary non-digit code, in case the leftmost
character was a digit. (Otherwise, the first group of digits will be missed.)

• The first two goals of clause 3 provide the condition for incrementing the accumulator.

Exercise 1.3. The pseudocode is shown as Algorithm A.1.1; the correspondence between the pseudocode’s
statements and the Prolog clauses in Example 1.6 is displayed in Table A.1.

2We are using SWI-Prolog, Version 3.4.5 here. In the latest version also available at the time of writing (Version 5.2.7), for some in-
explicable reason the order of the arguments of last/2 is the other way round.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

144

Appendix A: Solutions of Selected Exercises

Algorithm A.1.1: Numbers(Atom)

V alues ← list of ASCII values of characters in Atom (1)
Acc ← 0 (2)
Switch ← nodigit (3)
while V alues �= []

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[H |T] ← V alues (4)
if H is an encoded digit

then

⎧⎨
⎩

if Switch = nodigit (5)
then

{
Acc ← Acc + 1 (6)

Switch ← digit (7)
else

{
Switch ← nodigit (8)

V alues ← T (9)
N ← Acc (10)
return (N)

Statement (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Clause 0 0 0 2, 3, 4 2 2 2, 3 4 2, 3, 4 1

Table A.1: Algorithm A.1.1 & Prolog Clause Correspondence (Example 1.6)

Exercise 1.4. A simple tail recursive definition for mult/3 is by (P-A.3).

Prolog Code P-A.3: Definition of mult/3 by recursion

1 mult(_,[],[]).

2 mult(C,[H|T],[P|Ps]) :- P is C * H, !,

3 mult(C,T,Ps).

An alternative definition using accumulators is suggested by the hand computations in Fig. A.2, giving rise
to (P-A.4).

mult(0.2,[5.0,10.5,2.5],L)
0©

�� mult(0.2,[5.0,10.5,2.5],[],L)
2©

��

mult(0.2,[10.5,2.5],[1.0],L)
2©

�� mult(0.2,[2.5],[2.1,1.0],L)
2©

��

mult(0.2,[],[0.5,2.1,1.0],L)
1©

�� reverse([0.5,2.1,1.0],L) ��

L = [1.0,2.1,0.5]
0©

�� success

Figure A.2: Hand Computations for mult/3

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

145

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.4: mult/3 by the accumulator technique

1 mult(C,List,L) :- mult(C,List,[],L). % clause 0

2 mult(_,[],Acc,L) :- reverse(Acc,L). % clause 1

3 mult(C,[H|T],Acc,L) :- A is C * H, !, % clause 2

4 mult(C,T,[A|Acc],L).

Timing by time/1 will show that simple recursion delivers a better performance. mult/3 is an example of
a mapping operation where each entry of the input list is mapped by some function to the corresponding entry
of the output list. (add/3 is defined analogously.)

Exercise 1.5. Replace clause 1 in (P-1.13), p. 30, (the definition of pta/2) by the following two clauses.

pta(in(_,_,_,Ws,Acc),out(Ws,I)) :- integer(I),

Acc =:= I, !.

pta(in(_,Ps,Ds,Ws,Acc),out(Ws,I)) :- var(I),

classify_all(Ps,Ws,Ds),

I = Acc, !.

If a fixed number of iterations I is wanted, the stopping criterion requires that the accumulator be numerically
equal to I . The alternative stopping criterion is, as before, that all points be correctly classified.

A.2 Chapter 2 Exercises

All Prolog source code for Chap. 2 is available in the file dl.pl.

Exercise 2.1. sharp/2 is defined by recursion in (P-A.5).

Prolog Code P-A.5: Definition of sharp/2

1 sharp(E,E) :- not(proper_list(E)), !.

2 sharp([],[]).

3 sharp([E],#(Term,[])) :- sharp(E,Term), !.

4 sharp([H|T],#(Term1,Term2)) :- sharp(H,Term1),

5 sharp(T,Term2).

Perhaps the order of the two boundary case clauses should be given some thought. As it stands, the sharp-
notation of a list with a single entry of a free variable is correctly evaluated:

?- sharp([E],S).

E = _G210

S = #(_G210, []) ;

No

However, on interchanging the first two clauses in (P-A.5), we get an incorrect response:

?- sharp([E],S).

E = []

S = #([], []) ;

No

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

146

Appendix A: Solutions of Selected Exercises

Exercise 2.2. lf/2 is defined in (P-A.6).

Prolog Code P-A.6: Definition of lf/2

1 lf(Term,Term) :- var(Term), !. % clause 1

2 lf(#(Term,_),Term) :- not(functor(Term,#,2)), % clause 2

3 Term \= []. %

4 lf(#(Term,_),Leaf) :- lf(Term,Leaf). % clause 3

5 lf(#(_,Term),Leaf) :- lf(Term,Leaf). % clause 4

(P-A.6) admits the following declarative reading:

• Clause 1: Variables are leaves.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Prolog Techniques

147

Appendix A: Solutions of Selected Exercises

• Clause 2: Term is the left-hand leaf of #(Term,) if Term is not a list3 of length at least 1 nor is Term the
empty list. (Notice that in a more precise interpretation of clause 2, the phrase ‘is not’ should be replaced
by ‘cannot be unified with’. However, this change in interpretation makes a real difference only if lf/2 is
invoked with an unbound variable in its first argument, a case which will have been caught by clause 1.)4

• Clause 3: Leaf is a left-hand leaf of #(Term,) if Leaf is a left-hand leaf of its (left-hand) branch Term .

• Clause 4: Leaf is a left-hand leaf of #(,Term) if Leaf is a left-hand leaf of its (right-hand) branch Term .

Exercise 2.3. The definition of a first version of flatten/2 is is shown in (P-A.7).

Prolog Code P-A.7: A first version of flatten/2

1 flatten_1(L,F) :- sharp(L,S), bagof(Leaf,lf(S,Leaf),F).

The discussion on p. 46 shows that the use of the dot-notation for displaying lists can be achieved by the
predicate set prolog flag/2 . Close scrutiny of the Exercises 2.1 to 2.3 (and their solutions) will in fact reveal
that we can implement flatten/2 also directly, i.e. without recourse to our sharp-notation; such a version is
defined in (P-A.8).

Prolog Code P-A.8: A second version of flatten/2

1 leaf(Term,Term) :- var(Term), !.

2 leaf(.(Term,_),Term) :- not(functor(Term,.,2)),

3 Term \= [].

4 leaf(.(Term,_),Leaf) :- leaf(Term,Leaf).

5 leaf(.(_,Term),Leaf) :- leaf(Term,Leaf).

6 flatten_2(L,F) :- bagof(Leaf,leaf(L,Leaf),F).

The above two versions of flatten/2 behave identically to the built-in one; for example,

?- flatten_1([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)]

?- flatten_2([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)]

?- flatten([a,[Y,[b,X]],c,f(X)],L).

Y = _G330

X = _G336

L = [a, _G330, b, _G336, c, f(_G336)]

3‘Lists’ are understood here to be in terms of the sharp-notation.
4In the absence of clause 1, however, a query like lf(#(X,[]),Leaf). will cause stack overflow since clause 2 will fail and

clause 3 will cause looping as can be inferred from

?- #(Term,) = X.

Term = G219

X = #(G219, G220)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

148

Appendix A: Solutions of Selected Exercises

It is seen in particular that a free variable occurring more than once in the nested list will be unified, as
expected, with the same internal variable. This would not have been so, however, had we used the built-in
predicate findall/3 (in lieu of bagof/3) for collecting the leaves from the list’s tree representation:

?- findall(Leaf,leaf([a,[Y,[b,X]],c,f(X)],Leaf),Leaves).

Leaf = _G480

Y = _G456

X = _G462

Leaves = [a, _G641, b, _G629, c, f(_G617)]

Exercise 2.4. The definition of dot/1 in (P-A.9) follows the suggested route.

Prolog Code P-A.9: Definition of dot/1

1 dot(List) :- sharp(List,Term),

2 term_to_atom(Term,A1),

3 atom_chars(A1,L1),

4 sharps_to_dots(L1,L2),

5 concat_atom(L2,A2),

6 write_term(A2,[]).

The predicate sharps to dots/2 is defined by the accumulator technique in (P-A.10).

Prolog Code P-A.10: Definition of sharps to dots/2

1 sharps_to_dots(S,D) :- sharps_to_dots(S,[],R),

2 reverse(R,D), !.

3 sharps_to_dots([],L,L).

4 sharps_to_dots([#|T],Acc,L) :- sharps_to_dots(T,[.|Acc],L).

5 sharps_to_dots([H|T],Acc,L) :- sharps_to_dots(T,[H|Acc],L).

A more concise alternative is offered by the use of the built-in maplist/3 ; this is shown in (P-A.11).

Prolog Code P-A.11: Alternative definition of sharps to dots/2

1 sharps_to_dots(S,D) :- maplist(sharp_to_dot,S,D).

2 sharp_to_dot(#,’.’) :- !.

3 sharp_to_dot(C,C).

Exercise 2.5. The improved version is defined in (P-A.12).

Prolog Code P-A.12: Definition of flatten 4/2

1 flatten_4(X,[X]) :- var(X), !. % clause 0

2 flatten_4([],[]). % clause 1

3 flatten_4([H|T],L1) :- flatten_4(H,L2), % clause 2

4 flatten_4(T,L3), %

5 append(L2,L3,L1), !. % cut added here

6 flatten_4(X,[X]). % clause 3

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

149

Appendix A: Solutions of Selected Exercises

Clauses 1 to 3 are essentially as in flatten 3/2 . (The cut in clause 2 has been added to achieve a unique
solution.) To rectify the other problem with flatten 3/2 , we have to understand why it produces spurious
solutions on backtracking. When flatten 3/2 arrives at a list entry which is a variable, it will first unify
the variable with the empty list and then on further backtracking with [H|T] where H and T are themselves
variables. Because of the recursive definition, this will then give rise to further such erroneous unifications.
To avoid this, we simply ‘catch’ a variable first argument by clause 0. flatten 4/2 thus defined behaves as
expected:

?- flatten 4([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)] ;

No

Exercise 2.6. The following additional clause (an analogue of clause 0 in the definition of flatten 4/2) will
become the first clause in flatten dl/2 :

flatten_dl(X,[X|T]-T) :- var(X), !.

Exercise 2.7. We define in (P-A.13) nested/2 in terms nested/4 whose second and third argument are a
counter and an accumulator, respectively.

Prolog Code P-A.13: Definition of nested/2

1 nested(M,L) :- nested(M,1,[1],L), !.

2 nested(M,M,L,L).

3 nested(M,N,Acc,L) :- NewN is N + 1,

4 nested(M,NewN,[Acc,NewN],L).

The versions’ relative performance is illustrated below. It is seen in particular that the one based on difference
lists is nearly as good as the built-in version.

?- nested(8000, L), time(flatten(L, F)).

% 95,999 inferences in 0.44 seconds (218180 Lips)

?- nested(8000, L), time(flatten 1(L, F)).

% 216,004 inferences in 12.96 seconds (16667 Lips)

?- nested(8000, L), time(flatten 2(L, F)).

% 144,007 inferences in 12.79 seconds (11259 Lips)

?- nested(8000, L), time(flatten 3(L, F)).

% 335,514 inferences in 9.88 seconds (33959 Lips)

ERROR: Out of global stack

?- nested(8000, L), time(flatten 5(L, F)).

% 32,000 inferences in 0.93 seconds (34409 Lips)

Furthermore, it is seen that version 3, the implementation using list concatenation with append/3 , is not prac-
tically viable due to stack overflow. (This problem has been experienced even for a nesting depth of 1000.)

Exercise 2.8. Your session will typically look like this:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

150

Appendix A: Solutions of Selected Exercises

?- findall(_N,between(1,2000,_N),_L), time(reverse_1(_L,_R)).

% 2,003,001 inferences in 19.34 seconds (103568 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_2(_L,_R)).

% 2,002 inferences in 0.00 seconds (Infinite Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_3(_L,_R)).

% 4,000 inferences in 0.06 seconds (66667 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_4(_L,_R)).

% 2,002 inferences in 0.05 seconds (40040 Lips)

It is seen that the ‘näıve’ implementation is far less efficient than either of the other three. Furthermore, version 4
is seen to behave in the same way as the one using accumulators (which is the method used also to implement the
built-in version). This is not surprising since these two implementations were shown to be identical in Sect. 2.3.2.

Exercise 2.9.
Declarative Reading.

The difference list L-X is the reverse of the list [E1,E2|T] if the difference list L-[E2,E1|X] is the
reverse of T .

New Version. This is defined in (P-A.14).

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Prolog Techniques

151

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.14: Definition of reverse 5/2

1 reverse_5(L,R) :- rev_dl_3(L,R-[]).

2 rev_dl_3([],L-L). % clause 0

3 rev_dl_3([X],[X|L]-L). % clause 1

4 rev_dl_3([E1,E2|T],L1-L2) :- rev_dl_3(T,L1-[E2,E1|L2]). % clause 2

Noteworthy is in (P-A.14) the fact that reversal is carried out in ‘chunks of twos’ resulting in fewer invocations
of the auxiliary predicate. There are now two boundary clauses: if the list to be reversed has an even number
of entries then clause 0 is used; otherwise, clause 1 applies.

Unfolding. We are going to show here that the clauses 0–2 can be inferred from the clauses (b1)–(b2).5

The boundary clause 0 is identical to clause (b1).

We infer clause 1 by an elementary unfolding operation on the only goal in clause (b2): we first rewrite clause (b1)
as

rev_dl([],L-L) :- true.

and then seek to unify its head with the goal in the body of clause (b2):

?- rev_dl([],L-L) = rev_dl(T,L1-[H|L2]).

L = [_G360|_G361]

T = []

L1 = [_G360|_G361]

H = _G360

L2 = _G361

Yes

The unification succeeds and gives rise to the clause

rev_dl([_G360|[]],[_G360|_G361]-_G361) :- true.

which is equivalent to clause 1.

To infer now clause 2, we rewrite clause (b2) as

rev_dl([U|V],W1-W2) :- rev_dl(V,W1-[U|W2]).

and seek to unify the head of this new clause with the goal in clause (b2):6

?- rev_dl([U|V],W1-W2) = rev_dl(T,L1-[H|L2]).

U = _G384

V = _G385

W1 = _G387

W2 = [_G393|_G394]

T = [_G384|_G385]

5For the present purposes, the version number (i.e. the suffix ‘ 3 ’) is to be ignored.
6This is an instance of self unfolding.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

152

Appendix A: Solutions of Selected Exercises

L1 = _G387

H = _G393

L2 = _G394

Yes

The unification succeeds and gives rise to

rev_dl([H|T],L1-L2) :- rev_dl(V,W1-[U|W2]).

which in terms of Prolog’s internal variable names reads as follows.

rev_dl([_G393|[_G384|_G385]],_G387-_G394) :-

rev_dl(_G385,_G387-[_G384|[_G393|_G394]]).

The latter clause is readily recognized as clause 2. This second and final elementary unfolding operation con-
cludes a complete one step unfolding, thus making clause (b2) redundant.

Speed of Execution. The enhanced version is twice as fast as the previous one:

?- findall(_N,between(1,100000,_N),_L), time(reverse_5(_L,_R)).

% 50,002 inferences in 0.61 seconds (81970 Lips)

?- findall(_N,between(1,100000,_N),_L), time(reverse_4(_L,_R)).

% 100,002 inferences in 1.92 seconds (52084 Lips)

Further Enhancement. Modify the implementation by processing the input list in chunks of threes; this is
shown in (P-A.15).

Prolog Code P-A.15: Definition of reverse 6/2

1 reverse_6(L,R) :- rev_dl_4(L,R-[]).

2 rev_dl_4([],L-L).

3 rev_dl_4([E1],[E1|L]-L).

4 rev_dl_4([E1,E2],[E2,E1|L]-L).

5 rev_dl_4([E1,E2,E3|T],L1-L2) :- rev_dl_4(T,L1-[E3,E2,E1|L2]).

It is seen that three base cases are needed now, defining explicitly the reversal of lists with up to two entries.
The gain in speed is illustrated by the query below.

?- findall(_N,between(1,100000,_N),_L), time(reverse_6(_L,_R)).

% 33,335 inferences in 0.50 seconds (66670 Lips)

Generalization. Provide n base cases catering for the reversal of lists with up to n − 1 entries and write a
recursive clause for reversing lists with at least n entries.

Exercise 2.10, part (a). We convert colour/4 to its difference lists based form by (P-A.16).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

153

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.16: Definition of colour dl/4

1 colour_dl([],R-R,W-W,B-B).

2 colour_dl([col(Object,red)|T],

3 [col(Object,red)|R1]-R2,W1-W2,B1-B2) :-

4 colour_dl(T,R1-R2,W1-W2,B1-B2).

5 colour_dl([col(Object,white)|T],

6 R1-R2,[col(Object,white)|W1]-W2,B1-B2) :-

7 colour_dl(T,R1-R2,W1-W2,B1-B2).

8 colour_dl([col(Object,blue)|T],

9 R1-R2,W1-W2,[col(Object,blue)|B1]-B2) :-

10 colour_dl(T,R1-R2,W1-W2,B1-B2).

The concatenation of the three output difference lists is accomplished by

dijkstra_dl(Items,L1-L4) :- colour_dl(Items,L1-L2,L2-L3,L3-L4).

dijkstra/2 is now defined as in Sect. 2.4.3,

dijkstra(Items,Grouped) :- dijkstra_dl(Items,Grouped-[]).

Timing by time/1 will confirm that the difference list based version of each implementation is better (as mea-
sured by the number of inferences used) than its plain counterpart. The last version is the best as it uses
difference lists and takes a single pass through the input list.

Exercise 2.10, part (b). Add the clauses

colour([col(_,Colour)|T],R,W,B) :- Colour \= red,

Colour \= white,

Colour \= blue,

colour(T,R,W,B).

and

colour_dl([col(_,Colour)|T],R1-R2,W1-W2,B1-B2) :-

Colour \= red,

Colour \= white,

Colour \= blue,

colour_dl(T,R1-R2,W1-W2,B1-B2).

to the respective existing definitions.

Exercise 2.11. Carry out a clause-by-clause ‘translation’ of averages/2 and allied predicates to get (P-A.17).

Prolog Code P-A.17: Definition of averages dl/2

1 averages_dl(L1-L2,A1-A2) :- aver_dl([-1,1|L1]-L2,A1-A2), !.

2 aver_dl([_,0,_|X]-Y,X-Y).

3 aver_dl(X1-X2,ADL) :- av_rotate_dl(X1-X2,Y1-Y2),

4 aver_dl(Y1-Y2,ADL).

5 av_rotate_dl([H1,H2|Y]-[Last|Z],[H2|Y]-Z) :- Last is (H1 + H2)/2.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

154

Appendix A: Solutions of Selected Exercises

L1︷ ︸︸ ︷
[H|L1]︷ ︸︸ ︷

︸ ︷︷ ︸
L2

︸ ︷︷ ︸
[H|T]

H T

Figure A.3: Illustrating the Second Clause of dl/2

Exercise 2.12. Clause 2 in (P-2.19) is illustrated by Fig. A.3. It admits the following declarative interpretation:

The difference list version of [H|T] is [H|L1]-L2 if the difference list version of T is L1-L2 .

Exercises 2.13 & 2.14. The first implementation is by (P-A.18).

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Prolog Techniques

155

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.18: Definition of show matrix dl/1

1 show_matrix_dl(M-[]):- show_matrix(M), nl. % clause 0

2 show_matrix([]). % clause 1

3 show_matrix([H-[]|T]) :- write(H), write(’ ’), % clause 2

4 show_matrix(T). %

In clause 0, the argument of show matrix dl (which expects a difference list of difference lists) is converted to
a proper list of difference lists. This then is diplayed entry-wise by show matrix/1 , defined in the clauses 1 and
2. Noteworthy is clause 2 where the matrix head is unified with H-[] thereby making H a proper list which in
turn is displayed on the terminal.

Invoking show matrix dl(M1-M2) with a difference list M1-M2 will of course unify M2 with the empty list.
This can’t be ‘undone’ later and therefore any subsequent attempt of using M1-M2 as a genuine difference list
will fail. We solve this problem by not displaying the original difference list M1-M2 but a copy of it which we
write to the database prior to the invokation of show matrix dl/2 . The improved version show matrix dl2/2

is defined in (P-A.19).

Prolog Code P-A.19: Definition of show matrix dl2/1

1 show_matrix_dl2(DLM):- dynamic(matrix/1),

2 retractall(matrix(_)),

3 assert(matrix(DLM)),

4 matrix(M),

5 show_matrix_dl(M).

It will behave as expected:

?- matrix a(A), dl2(A, DLA), show matrix dl2(DLA),

rot matrix dl(DLA, DLR), show matrix dl2(DLR).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

[a22, a23, a24, a21] [a32, a33, a34, a31] [a12, a13, a14, a11]

You will find more on database operations in Sect. 3.1.
In the above approach, a copy of the term holding the matrix in difference list form was written to and later

retrieved from the database. Subsequently, the new copy (or parts of it) may be unified with some other term
without affecting the original. There is a built-in predicate to achieve just that; it is copy term/2 (see inset).

Built-in Predicate: copy term(+TermIn,-TermOut)

The term in TermIn is copied to TermOut . Each of the free variables in TermIn

is given a new (internal) name and subsequently no link is maintained between
the two terms. Example:

?- copy term(f(a,X),Y), X = b.

X = b

Y = f(a, G386)

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

156

Appendix A: Solutions of Selected Exercises

A new version of show matrix dl/1 is defined in (P-A.20).

Prolog Code P-A.20: Definition of show matrix dl3/1

1 show_matrix_dl3(DLM):- copy_term(DLM,M),

2 show_matrix_dl(M).

It will be found to respond exactly as show matrix dl2/1 did.

Exercise 2.15. Add to the database the clause

g_seidel(in([[First|Rest1]-Rest2|A1]-A2,

[B|B1]-[B|B2],[_|T1]-[NewX|T2],[S|S1]-[S|S2]),

out(NewAs,B1-B2,T1-T2,S1-S2)) :-

dot_product_dl(Rest1-Rest2,T1-[NewX|T2],P),7

NewX is B - P,

rot_matrix_dl([[First|Rest1]-Rest2|A1]-A2,NewAs).

to enable g seidel/2 to work also with difference lists. (Notice that this new clause won’t interfere with the
earlier definition.) No other changes are necessary since g seidel/7 will call this modified version of g seidel/2
as before:

?- a(A), b(B), x0(X), s(S),

dl2(A,ADL), dl(B,BDL), dl(X,XDL), dl(S,SDL),

g_seidel(ADL,BDL,XDL,SDL,50,NewX-[],NewS-[]).

...

NewX = [62.5, 62.5, 87.5, 87.5]

NewS = [3, 4, 1, 2]

To simplify the query, we may use the new version of g seidel/7 , defined in (P-A.21).

Prolog Code P-A.21: New version of g seidel/7

1 g_seidel_2(A,B,X,S,I,NewX,NewS) :-

2 dl2(A,ADL),

3 dl(B,BDL),

4 dl(X,XDL),

5 dl(S,SDL),

6 g_seidel(ADL,BDL,XDL,SDL,I,NewX-[],NewS-[]), !.

(This version uses the same pattern of proper list inputs as g seidel/7 but works internally with difference
lists.)

7The dot product of vectors in difference list notation is defined by the accumulator technique as follows

dot_product_dl(DL1,DL2,Result) :- dot_product_dl(DL1,DL2,0,Result), !.

dot_product_dl(L-_,_,Acc,Acc) :- var(L).

dot_product_dl([HU|TU1]-TU2,[HV|TV1]-TV2,Acc,Result) :-

NewAcc is Acc + HU * HV, !,

dot_product_dl(TU1-TU2,TV1-TV2,NewAcc,Result).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

157

Appendix A: Solutions of Selected Exercises

Experiments will show that the new implementation always needs a lesser number of inferences. However,
for the CPU–time also to show a relative improvement, the problem has to be of a minimum size. (Difference
lists carry a certain computational overhead worth paying for problems beyond a certain size only.)

A.3 Chapter 3 Exercises

Prolog source code: for Sect. 3.1, see party.pl, people.pl, arrange.pl and queue.pl; for Sect. 3.2, see
transformations.pl; for Sect. 3.3, see dl.pl and transformations.pl.

Exercise 3.1, part (f). facing/3 is recursively defined by

facing(X,L,R) :-

right_to(L,X), right_to(X,R), (L == R, !; true).

facing(X,L,R) :-

facing(X,Y,Z), right_to(L,Y), right_to(Z,R), (L == R, !; true).

The declarative reading of this definition should be straightforward in conjunction with Fig. 3.2. Recursion
stops when the last two arguments of facing/3 are instantiated to identical terms. For an odd number of
guests, facing/3 will stop once the second and third arguments are identical to the first:

?- listing(right to/2).

right to(clara, adam).

right to(adam, susan).

right to(susan, clara).

?- facing(adam,Left,Righ).

Left = clara Righ = susan ;

Left = susan Righ = clara ;

Left = adam Righ = adam ;

No

Define now opposite to/2 by

opposite_to(X,Y) :- facing(X,Y,Y), X \== Y.

(The second goal ensures failure for an odd number of guests.)

Exercise 3.2. (P-A.22) shows the definition of opposites/0 ; guests/0 is defined analogously.

Prolog Code P-A.22: Definition of opposites/0

1 opposites :- opposite_to(_,_),

2 ((right_to(X,Y),

3 opposite_to(X,Z),

4 write(X), write(’, ’), write(Z), nl,

5 fail); true).

Observations. opposites/0 will succeed iff opposites to/2 does, i.e. if there are an even number of names
in the database. From inside a failure driven loop all opposite pairs are displayed and success is enforced by
disjunction with ‘true ’.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

158

Appendix A: Solutions of Selected Exercises

(P-A.23) defines look right/1 in terms of an auxiliary predicate look right/2 . In the second argument
of this predicate the list of names is accumulated until the person’s name reappears in the head.

Prolog Code P-A.23: Definition of look right/1

1 look_right(Pers) :- look_right(Pers,[Pers|T]),

2 reverse(T,List),

3 write_list(List).

4 look_right(Pers,[X,Pers]) :- right_to(Pers,X).

5 look_right(Pers,[X,H|T]) :- right_to(H,X),

6 look_right(Pers,[H|T]).

write list/1 is defined by recursion (not shown here) and displays the entries of a list in a single line.

Exercise 3.3, part (a). Don’t change the database if one or two people are at the table:

swap_neighbours(Pers1,Pers2) :- right_to(Pers1,Pers2),

right_to(Pers2,Pers1).

Changes are due if more than two people are at the table:

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Prolog Techniques

159

Appendix A: Solutions of Selected Exercises

swap_neighbours(Left,Right) :- right_to(Left,Right),

right_to(L,Left),

right_to(Right,R),

retract(right_to(Left,Right)),

retract(right_to(L,Left)),

retract(right_to(Right,R)),

assert(right_to(Right,Left)),

assert(right_to(L,Right)),

assert(right_to(Left,R)).

Exercise 3.3, part (b). Use swap neighbours/2 for swapping neighbours:

swap(Pers1,Pers2) :- swap_neighbours(Pers1,Pers2).

swap(Pers1,Pers2) :- swap_neighbours(Pers2,Pers1).

And, do changes as necessary for swapping people who aren’t neighbours:

swap(Pers1,Pers2) :- right_to(Pers1,R1),

right_to(L1,Pers1),

right_to(Pers2,R2),

right_to(L2,Pers2),

retract(right_to(Pers1,R1)),

retract(right_to(L1,Pers1)),

retract(right_to(Pers2,R2)),

retract(right_to(L2,Pers2)),

assert(right_to(Pers1,R2)),

assert(right_to(L2,Pers1)),

assert(right_to(Pers2,R1)),

assert(right_to(L1,Pers2)).

Exercise 3.4, part (a). Only one of the four cases in Table 3.1 will be discussed here: the last two customers
swap places and there are more than two customers in the queue (Fig. A.4). The relations of interest which can

. . .Z Y X W V E D C B A
 �� �

� �

not(behind(Z,))

behind(Y,Z)

behind(X,Y)

. . .Y Z X W V E D C B A� �

not(behind(Y,))

behind(Z,Y)

behind(X,Z)

Figure A.4: The Last Two Customers Swap Places

be inferred from the database before and after the swap are indicated in Fig. A.4. The corresponding clause of
swap neighbours/2 is therefore

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

160

Appendix A: Solutions of Selected Exercises

swap_neighbours(Y,Z) :- % swap Y and Z

not(behind(Z,_)), % Z is the last in the queue

behind(Y,Z), % Z is behind Y in the queue

behind(X,Y), % Y is behind X in the queue

retract(behind(Y,Z)), % remove relation between Y and Z

retract(behind(X,Y)), % remove relation between X and Y

assert(behind(X,Z)), % establish relation between X and Z

assert(behind(Z,Y)). % establish relation between Z and Y

(You should complete the remaining three clauses with reference to Table 3.1 and by using sketches similar to
Fig. A.4.)

Exercise 3.5. The intended database changes are achieved by a failure driven loop:

?- dynamic(lives in/2),

((lives in(london, Person), assert(lives in(york, Person)),

fail); true), retractall(lives in(london,)).

Exercise 3.6. The definition of joins/1 is fairly straightforward: check first that there aren’t any facts in the
database for right to/2 ; then assert the appropriate fact for right to/2 ; finally, augment the file people.pl

and report the job completed.

joins(Pers) :- not(right_to(_,_)),

assert(right_to(Pers,Pers)),

tell(’people.pl’), listing(right_to/2), told,

write(Pers), write(’ has joined the table.’), nl.

Exercise 3.7. The task is to enhance the definition of the second clause of

save predicates to(+Filename,+List) . As a first step, we translate the informal specification as follows:

Condition -> Action ; Alternative Action (A.1)

with

Condition = ∀x(A(x) → B(x)) (A.2)

A(x) = x ∈ List (A.3)

B(x) = my predicate(x,) (A.4)

Action = write to file (A.5)

Alternative Action = display error message (A.6)

Since it is more difficult to implement in standard Prolog a universally quantified condition than an existentially
quantified one, we write (A.1) in terms of the negation of (A.2), thereby getting

Condition = ¬(∀x(A(x) → B(x))) (A.7)

Action = display error message (A.8)

Alternative Action = write to file (A.9)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

161

Appendix A: Solutions of Selected Exercises

Rewrite now the right-hand side of (A.7) as follows:8

Condition = ∃x¬((A(x) → B(x)))

= ∃x¬(B(x) ∨ ¬A(x))

= ∃x(A(x) ∧ ¬B(x)) (A.10)

A Prolog implementation of save predicates to(+Filename,+List) based on (A.1), (A.3)–(A.4) and

(A.8)–(A.10) is therefore

save_predicates_to(Filename,List) :-

(member(X,List), not(my_predicate(X,_))) -> (write(’...’),

nl,

fail);

write_to_file(Filename,List).

where write to file/2 is defined by a failure driven loop:

8The rules hereby used are from Predicate and Propositional Calculus; they are in turn: a Quantifier Equivalence Rule, Material

Implication and DeMorgan’s Rule.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Prolog Techniques

162

Appendix A: Solutions of Selected Exercises

write_to_file(Filename,List) :- tell(Filename),

((member(Fun/Arity,List),

listing(Fun/Arity),

fail); true),

told.

Alternative Solution of Exercise 3.7. The built-in SWI Prolog predicate forall(+Condition,+Action)

allows a direct implementation of the Condition in (A.2). The resulting alternative definition of
save predicates to/2 is then

save_predicates_to(Filename,List) :-

(forall(member(X,List),

my_predicate(X,_)) -> write_to_file(Filename,List));

write(’...’), nl, fail.

(Two possibilities are discussed in [16] for defining forall/2 .)

Exercise 3.9. The directive :- dynamic(album/1). in the source file will make album/1 a dynamic predicate.
Now use the query

?- retractall(album([stamp(’Germany’,’Kaiser’, ,)|])).

Yes

to remove the clauses as required.

Exercise 3.14. See Fig. A.5.

Exercise 3.15. We unfold the second goal in clause two of flatten dl/2 :

?- unfold(flatten dl/2,2,2).

Clause(s) used:

Clause 1 of predicate flatten dl/2

Clause 2 of predicate flatten dl/2

Clause 3 of predicate flatten dl/2

...

Clause removed:

Clause 2 of predicate flatten dl/2

flatten dl([], A-A).

flatten dl(A, [A|B]-B).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl([A|B], C-D) :- flatten dl(A, C-[B|D]),

true.

As shown above, flatten dl/2 is now defined by five clauses which, however, have to be rearranged to restore
the ’original order’: clauses 3–5 are a replacement for what was formerly clause 2; thus

?- clause arrange(flatten dl/2,[1,3,4,5,2]).

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

163

Appendix A: Solutions of Selected Exercises

�

�

�

�

?- consult(user).

|: :- consult(transformations).

% transformations compiled 0.06 sec, 9,584 bytes

|: rev dl([],L-L).

|: rev dl([H|T],L1-L2) :- rev dl(T,L1-[H|L2]).

|:
	
 ��Ctrl +

	
 ��Z

% user compiled 86.18 sec, 10,128 bytes

Yes

?- unfold(rev dl/2,2,1).

Clause(s) used:

Clause 1 of predicate rev dl/2

Clause 2 of predicate rev dl/2

rev dl([], A-A).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]).

rev dl([A], [A|B]-B).

rev dl([A, B|C], D-E) :- rev dl(C, D-[B, A|E]).

Clause removed:

Clause 2 of predicate rev dl/2

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A, B|C], D-E) :- rev dl(C, D-[B, A|E]).

Yes

⎫⎬
⎭ Manual input

of rev dl/2

︸︷︷︸
� COSU on goal 1 of clause 2

}
Old, redundant clause

�

}
New clauses

⎫⎬
⎭

New

definition of

rev dl/2

Figure A.5: Automated Solution of Exercise 2.9, Part (c)

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl([A|B], C-D) :- flatten dl(A, C-[B|D]),

true.

flatten dl(A, [A|B]-B).

The above is equivalent to the initial definition (both logically and procedurally). Clause 4 may be removed
from the database, however, without affecting the behaviour of flatten dl/2 since clause 2 won’t ever be made
use of:9

• Clause 1 is invoked for flattening the empty list.

9To be more precise, the first solution found by flatten dl/2 won’t be affected by the removal of this clause; further solutions
found on backtracking may differ. They are, however, of no concern here because of the cut used in flatten 5/2 .

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

164

Appendix A: Solutions of Selected Exercises

• Clause 2 is invoked for flattening lists with a single entry.

• All other lists are covered by clause 3 which is used for flattening lists with at least two entries.

Remove now the redundant clause:

?- clause arrange(flatten dl/2,[1,2,3,5]).

Yes

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl(A, [A|B]-B).

An experiment akin to the one in Exercise 2.7 confirms that flattening based on this version is more efficient
than the built-in flatten/2 :

?- time(flatten 5([a,[b],[c,[d]],[e,[f],[g,[h]]],

[i,[j],[k,[l]],[m,[n],[o,[p]]]]],F)).

% 43 inferences in 0.00 seconds (Infinite Lips)

F = [a, b, c, d, e, f, g, h, i|...]

?- time(flatten([a,[b],[c,[d]],[e,[f],[g,[h]]],

[i,[j],[k,[l]],[m,[n],[o,[p]]]]],F)).

% 191 inferences in 0.00 seconds (Infinite Lips)

F = [a, b, c, d, e, f, g, h, i|...]

Further improvement may be achieved by carrying on unfolding in an analogous manner. Let us unfold goal 3
of clause 3:

?- unfold(flatten dl/2,3,3).

...

?- clause arrange(flatten dl/2,[1,2,4,5,6,3]).

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten_dl(A, B-C),

true.

flatten dl([A, B], C-D) :- flatten dl(A, C-E),

flatten dl(B, E-D),

true.

flatten dl([A, B, C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E),

true.

flatten dl([A, B, C, D|E], F-G) :- flatten dl(A, F-H),

flatten dl(B, H-I),

flatten dl(C, I-J),

flatten dl(D, J-K),

flatten dl(E, K-G).

flatten dl(A, [A|B]-B).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

165

Appendix A: Solutions of Selected Exercises

The improvement in performance is gleaned from

?- time(flatten 5([a,[b],[c,[d]],[e,[f],[g,[h]]],

[i,[j],[k,[l]],[m,[n],[o,[p]]]]],F)).

% 35 inferences in 0.00 seconds (Infinite Lips)

F = [a, b, c, d, e, f, g, h, i|...]

It is seen that as unfolding is carried further, longer and longer lists will be flattened by rules explicitly referring
to their length and less is dealt with by the (penultimate) ‘general rule’.

Exercise 3.16. The initial and intended final arrangement of clauses are indicated in Fig. A.6. The predicate
cosu/3 is defined in (P-A.24).

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

166

Appendix A: Solutions of Selected Exercises

Initial Arrangement

clause 1
clause 2
...

clause (i − 1)

�

clause i

clause (i + 1)
clause (i + 2)
...

clause c1

�

After Applying
unfold(...,i,...)

(New clauses shaded

dark .)

clause 1
clause 2
...

clause (i − 1)

�

clause i

clause (i + 1)
...

clause (c1−1)

�

��

	�
clause c1

clause (c1 +1)
...

clause c2

Final Arrangement

...

...

...

...

...

...

...

...

...

...

...

...

Figure A.6: Database Changes Brought About by cosu/3

Prolog Code P-A.24: Definition of cosu/3

1 cosu(Fun/Arity,I,J) :-

2 functor(Pred,Fun,Arity),

3 predicate_property(Pred,number_of_clauses(C1)),

4 unfold(Fun/Arity,I,J),

5 predicate_property(Pred,number_of_clauses(C2)),

6 A1 is 1, B1 is I - 1,

7 A2 is I, B2 is C1 - 1,

8 A3 is C1, B3 is C2,

9 from_to(A1,B1,L1),

10 from_to(A2,B2,L2),

11 from_to(A3,B3,L3),

12 concat3(L1,L3,L2,L),

13 clause_arrange(Fun/Arity,L).

With reference to Fig. A.6, the steps performed by cosu/3 are:

• Unify with C1 the number of clauses in the predicate’s original definition. The initial arrangement is
shown Fig. A.6.

• Unfold by using unfold/3 . The resulting state of the database is again shown in Fig. A.6.

• Unify with C2 the number of clauses in the predicate’s new definition.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

167

Appendix A: Solutions of Selected Exercises

• As seen from Fig. A.6, the pattern of intended rearrangement for the clauses is given by the permutation

L = [1, 2, . . . , i − 1, c1, c1 + 1, . . . , c2, i, i + 1, . . . , c1 − 1]

This list is then used to rearrange the clauses by clause arrange/2 .

• The predicate from to/3 is used to generate integer lists with specified first and last entries:

from_to(Low,High,List) :- bagof(N,between(Low,High,N),List), !.

from_to(_,_,[]).

(The catch-all clause ensures that from to/3 always succeeds.)

Exercise 3.17. Using the built-in predicate setof/3 , the predicate colours/2 collects the items’ colours in
alphabetical order.

colours(Items,Colours) :- setof(Colour,

Object^(member(col(Object,Colour),Items)),

Colours).

dijkstra/3 is then used to obtain the items’ list.

dijkstra_st(Items,Grouped) :- colours(Items,Colours),

dijkstra(Colours,Items,Grouped).

Exercise 3.19. The definition of def encolour pl/1 is not shown here as it is analogous to that of
def encolour dl/1 . (The source code is found in the file dl.pl.) The predicate def endijkstra pl/1 is
defined in (P-A.25).

Prolog Code P-A.25: Definition of def endijkstra pl/1

1 def_endijkstra_pl(Colours) :- dynamic(endijkstra_pl/2),

2 retractall(endijkstra_pl(_,_)),

3 length(Colours,N),

4 length(Vars,N),

5 Head = endijkstra_pl(Items,Grouped),

6 Goal1 =.. [encolour_pl,Items|Vars],

7 Goal2 =.. [flatten,Vars,Grouped],

8 Body = (Goal1, Goal2),

9 assert((Head :- Body)).

length/1 is used here to create a list of the requisite number of unbound variables which then serve as arguments
to both encolour pl and flatten/2 . (The former receives them as individual arguments whereas to the latter
they are passed as a list.)

A.4 Chapter 4 Exercises

All Prolog source code for Chap. 4 is available in the file rhyme demo.pl.

Exercise 4.1. A predicate n times/3 will be needed which returns in a list a specified number of copies of
any term:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

168

Appendix A: Solutions of Selected Exercises

?- n_times(3,any(term),L).

L = [any(term), any(term), any(term)]

This we define by the accumulator technique as follows.

n_times_acc(0,_,L,L).

n_times_acc(N,X,L1,L2) :- N1 is N - 1,

n_times_acc(N1,X,[X|L1],L2).

n_times(N,X,L) :- n_times_acc(N,X,[],L), !.

Now, we define long verse/1 by

long_verse(N) :- n_times(N,’That interacts with the item ...’,L),

dynamic(verse/1),

retract(verse(_)),

assert(verse(L)).

Exercise 4.2. The second clause in the definition of rhyme prel 5/ (p. 128) should be augmented by a cut :

rhyme_prel_5([H|T],C) :- append(P,[[H|T]],C),

rhyme_prel_5(T,P), !.

Exercise 4.3. Let us examine interactively, for example, how the query

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

169

Appendix A: Solutions of Selected Exercises

?- cputime(rhyme_prel_5,[[’B’,’A’],R],Time).

could be dealt with. Obviously, we will want rhyme prel 5/2 to be invoked by call/1 and therefore we will
have to create first a term which will serve as the argument of call/1 . To achieve this, we use the built-in
predicate univ.

?- T =.. [rhyme prel 5,[’B’,’A’],R].

T = rhyme prel 5([’B’, ’A’], G345)

R = G345

Yes

We now submit T to call/1 , the latter sandwiched between two invocations of statistics/2 :

?- T =.. [rhyme prel 5,[’B’,’A’],R],

statistics(cputime,Before), call(T),

statistics(cputime,After), Time is Before - After.

T = rhyme_prel_5([’B’, ’A’], [[’A’], [’B’, ’A’]])

R = [[’A’], [’B’, ’A’]]

Before = 15124

After = 15124

Time = 0

Yes

(The CPU time for the above happens to be negligible hence the zero response.) This gives rise to the following
definition.

cputime(Predname,Arglist,Time) :- T =.. [Predname|Arglist],

statistics(cputime,Before),

call(T),

statistics(cputime,After), !,

Time is After - Before.

As a consequence of the cut in the above definition, cputime/3 will find one solution only even if the under-
lying query could be re-satisfied on backtracking. Furthermore, and perhaps more importantly in our context,
if the query has a solution but would be caught in an infinite loop on trying to re-satisfy the goal, cputime/3
will still deliver this unique solution and respond with failure subsequently. This property of cputime/3 is
essential when timing the same predicate with several sets of arguments using findall/3 , as seen on p. 131 for
rhyme prel 5/2 .

Exercise 4.4. Prior to applying cputime/3 from Exercise 4.3, we construct the predicate’s name by using
concat atom/2 (see, inset on p. 126):

cputime(Predname,Arglist,Version,Time) :- concat_atom([Predname,’_’,Version],Pred),

cputime(Pred,Arglist,Time).

Exercise 4.5. We first show how the first row of Table 4.2 is produced interactively.10

?- findall(_Time,

(between(1,7,_J),

_L is _J * 10 ** 2,

long_verse(_L),

10The Java/C–style code layout is of course not the actual one but is employed here for better readability only.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

170

Appendix A: Solutions of Selected Exercises

verse(_V),

cputime(rhyme_prel,[_V,_R],5,_Time)

),

Row

).

Row = [1.98, 15.71, 52.23, 124.19, 241.95, 418.81, 666.96]

Now, after some modifications (involving the introduction of the variables I and Version), we embed this
query into another findall to collect all the rows of Table 4.2 in the variable Rows which, as a list (of lists),
we then display by using show list/1 :

?- findall(_Row,

(between(2,4,_I),

findall(_Time,

(between(1,7,_J),

_Version is _I + 3,

_L is _J * 10 ** _I,

long_verse(_L),

verse(_V),

cputime(rhyme_prel,[_V,_R],_Version,_Time)

),

_Row

)

),

_Rows

),

show_list(_Rows).

[1.97, 15.77, 52.35, 124.51, 242.6, 419.9, 666.41]

[4.23, 19.99, 45.59, 85.74, 135.45, 194.44, 276.88]

[0.11, 0.44, 0.99, 1.2, 1.37, 1.48, 1.76]

Alternative Solution. For a perhaps simpler solution by using a single instance of bagof/3 , we revisit the first
query above with findall replaced by bagof .

?- bagof(_Time,

_J^_L^_V^_R^(between(1,7,_J),

_L is _J * 10 ** 2,

long_verse(_L),

verse(_V),

cputime(rhyme_prel,[_V,_R],5,_Time)

),

Row).

Row = [1.98, 15.76, 52.24, 124.29, 242.11, 419.08, 666.96]

How should the above be augmented to display on backtracking all three rows of Table 4.2? We inroduce new
variables Version and I as before but won’t prefix the goal inside bagof by Version^ thus allowing Prolog
to find solutions corresponding to each particular value of Version . Finally, backtracking is accomplished by
a failure-driven loop.

?- bagof(Time,

I^J^L^V^R^(between(2,4,I),

between(1,7,J),

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

171

Appendix A: Solutions of Selected Exercises

Version is I + 3,

L is J * 10 ** I,

long_verse(L),

verse(V),

cputime(rhyme_prel,

[V,R],

Version,

Time

)

),

Row

),

write(Version),

write(’ - ’),

write(Row),

nl,

fail.

5 - [1.98, 15.76, 52.29, 124.46, 242.67, 419.58, 667.4]

6 - [4.28, 20.05, 45.65, 85.79, 135.62, 194.5, 278.85]

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

172

Appendix A: Solutions of Selected Exercises

7 - [0.11, 0.44, 0.77, 1.21, 1.43, 1.48, 1.7]

No

Exercise 4.6. The definition of song skeleton/1 is fairly obvious if we use int/1 and int/2 as ‘templates’:

song_skeleton(L) :- song_skeleton([1],L).

song_skeleton(L,L).

song_skeleton([H|T],L) :- succ(H,N),

song_skeleton([N|[H|T]],L).

A more interesting question is perhaps how the definition of int/2 (p. 134) came about in the first place. To
examine this, we first consider the following partial implementation of int/2

int(I,I). % clause 1

int(1,I) :- int(2,I). % clause 2

The query ?- int(1,I). will be first satisfied by virtue of clause 1 with I = 1 and on backtracking re-satisfied
by clause 2 which succeeds with I = 2 since its only subgoal (i.e. int(2,I)) unifies with clause 1. If we now
take also the clause

int(2,I) :- int(3,I). % clause 3

aboard, everything said thus far still applies; moreover, the body of clause 2 now succeeds also by clause 3 with
I = 3 since the body of the latter unifies with clause 1. Clearly, any number of new clauses could be added in
this manner to the database. (The resulting search tree is shown in Fig. A.7 below.) Now, the second clause

I = 1

I = 2

I = 3 ...

�
�

�
�

�

�
�
�
�
�

?- int(3,I).

�
�

�
�

�
�

�
�
�
�
�

?- int(2,I).

��������

�
�
�
�
�

?- int(1,I).

Figure A.7: Search Tree of the Query ?- int(1,I).

in the definition of int/2 on p. 134 can be considered a subsumption of all possible such augmentations of the
database.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

173

Appendix A: Solutions of Selected Exercises

It is also instructive to observe that int/1 is defined by solving another problem (the definition of int/2)
of which the original problem is a special case. This approach is often successful in Prolog programming.

Exercise 4.7. Our definition of song skeleton/1 very closely models that of nat/1 :

song_skeleton(L) :- first_verse, current_verse(L).

song_skeleton(L) :- repeat, update_verse, current_verse(L).

with the predicates first verse/0 and update verse/0 defined by

first_verse :- dynamic(current_verse/1),11

retractall(current_verse(_)),

assert(current_verse([1])).

update_verse :- current_verse([H|T]),

retractall(current_verse(_)),

NewH is H + 1,

assert(current_verse([NewH,H|T])).

Exercise 4.8. We calculate the digits of a natural number by applying the built-in arithmetic functions mod
(the modulo)12 and // (the integer division) in an alternate fashion; the digits of 351, for example, may be
obtained by

?- N0 is 351,

D1 is N0 mod 10, N1 is N0 // 10,

D2 is N1 mod 10, N2 is N1 // 10,

D3 is N2 mod 10.

D1 = 1

D2 = 5

D3 = 3

suggesting a predicate digits/3 with

digits(N,Acc,[N|Acc]) :- N < 10, !.13

digits(N,Acc,D) :- H is N mod 10, NewN is N // 10,

digits(NewN,[H|Acc],D).

which then behaves as expected:

?- digits(351,[],D).

D = [3, 5, 1]

11As an alternative, the predicate current verse/1 may be declared dynamic also by the directive

:- dynamic(current verse/1).

This is usually placed at the head of the source file.
12mod computes the remainder of an integer division. It is not to be confused with Prolog’s built-in arithmetic function rem

which returns the fractional part of a quotient:

?- Frac is 3896 rem 100.

Frac = 0.96
13Without this cut some spurious solutions are returned on backtracking:

?- digits(98,[],L).

L = [9, 8] ;

L = [0, 9, 8]

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

174

Appendix A: Solutions of Selected Exercises

We define the predicate digits(+Number,-List) thus by

digits(N,D) :- integer(N), digits(N,[],D).

(This definition works for the instantiation pattern digits(+Number,+List) , too.)
With a view to the instantiation pattern digits(-Number,+List) , we observe that any number can be

written in terms of its digits as in

4351 = 10 × (10 × (10 × (10 × 0 + 4) + 3) + 5) + 1

suggesting Algorithm A.4.1.

Algorithm A.4.1: Value(List)

Accumulator ← 0 (1)
List ← list of digits, e.g. [4, 3, 5, 1] (2)
while List �= [] (3)

do

⎧⎪⎪⎨
⎪⎪⎩

[H |T] ← List

Accumulator ← 10 ∗ Accumulator

Accumulator ← Accumulator + H

List ← T

Number ← Accumulator (4)
return (Number)

We implement (3)–(4) by value/3 ,

value([],N,N).

value([H|T],Acc,N) :- integer(H), H < 10,

AccNew is H + 10 * Acc,

value(T,AccNew,N).

while (1) and (2) will take effect when value/3 is invoked:

?- value([4,3,5,1],0,V).

V = 4351

The definition of digits(-Number,+List) is now straightforward:

digits(N,D) :- var(N), value(D,0,N).

The predicate in words/2 finally is defined by

in_words(N,Text) :- digits(N,D), number(D,Text).

with a predicate number/2 which assembles from a list of digits the corresponding number in plain English:

?- number([3,5,1],Text).

Text = threehundredfiftyone

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

175

Appendix A: Solutions of Selected Exercises

We won’t spell out here the definition of number/2 . The idea for a first rough version can be gleaned, however,
from the following query:

?- maplist(units,[4,3,5,1],[Th, H, T, U]),

concat_atom([Th,thousand, H,hundred, T,ten, U],Text).

Text = fourthousandthreehundredfivetenone

where units/2 is defined by a collection of facts in the database:

units(0,’’). units(1,one). units(2,two).

units(3,three). units(4,four). units(5,five).

...

Exercise 4.9. The definition of capital/2 in (P-A.26) is self-explanatory.

Prolog Code P-A.26: Definition of capital/2

1 capital(Atom1,Atom2) :-

2 atom_chars(Atom1,[H|T]), % disassemble Atom

3 to_upper(H,Upper), % convert H to upper case

4 atom_chars(Atom2,[Upper|T]). % re-assemble Atom

5 to_upper(Lower,Upper) :- char_code(Lower,L),

6 U is L - 32,

7 char_code(Upper,U).

Exercise 4.10. The following definition of line3/2 is derived from the sample query on p. 137.

line3(Numbers,Text) :- maplist(in_words,Numbers,[H|T]),

maplist(atom_concat(’ men,\n ’),T,L1),

capital(H,C),

concat_atom([C|L1],Text1),

atom_concat(Text1,’ man and his dog,’,Text).

Notice the partial application of atom concat/3 here in that its first argument is fixed, thereby becoming a
predicate of two arguments, ready to be used by maplist/3 .

Exercise 4.11. The top level predicate song/0 is finally defined by a failure driven loop thus

song :- song_skeleton([H|T]),

line1(H,L1),

line2(L2),

line3([H|T],L3),

line4(L4), nl,

write(L1), nl,

write(L2), nl,

write(L3), nl,

write(L4), nl, fail.

The only building block of song/0 perhaps in need of some comment is line1/2 which is expected to behave
as follows.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

176

Appendix A: Solutions of Selected Exercises

?- line1(1,L).

L = ’One man went to mow,’

?- line1(351,L).

L = ’Threehundredfiftyone men went to mow,’

We use the predicates in words/2 and capital/2 (from Exercise 4.8 and (P-A.26) in Exercise 4.9, respectively)
to define line1/2 :

line1(N,Text) :- in_words(N,HowMany),

capital(HowMany,C),

((N =:= 1, atom_concat(C,’ man went to mow,’,Text));

(N > 1, atom_concat(C,’ men went to mow,’,Text))).

A simpler alternative definition is as follows.

line1(1,’One man went to mow,’) :- !.

line1(N,Text) :- in_words(N,HowMany),

capital(HowMany,C),

atom_concat(C,’ men went to mow,’,Text).

This is the preferred version as it does not involve any arithmetic operations nor a choice of case by the
disjunction operator; it uses Prolog’s search and unification mechanisms instead.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Prolog Techniques

177

Appendix B: Software

Appendix B

Software

Below are listed the Prolog source files referenced in the various chapters. They are available on the Ventus website.

Referred to in Chap. 1.

accumulator.pl

Referred to in Chap. 2.

dl.pl

Referred to in Chap. 3.

arrange.pl party.pl stamps.pl

committee.pl people.pl transformations.pl

dl.pl queue.pl

Referred to in Chap. 4.

rhyme_demo.pl

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

178

Appendix B: Software

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Prolog Techniques

179

Appendix C: Glossary

Appendix C

Glossary

Note. You will find a more complete collection of Prolog terms defined in the SWI–Prolog manual [18].

Accumulator. An auxiliary argument whose final value is calculated by repeated updating. It plays the rôle of an
accumulator variable in a loop in imperative progranmming.

Anonymous variable. It is a variable with no user-defined name and it is denoted by the underscore (_). It is
used to replace singleton variables (i.e. variables occurring once only in a clause). Several anonymous variables in the
same clause will be unrelated, i.e. their system-chosen names will be different.

Argument. One of the positions of a predicate if this has arity at least one.

Argument pattern. This is a way of describing the modes in which a predicate can be called. The name of an
input argument is prefixed by a plus sign (+); the name of an output argument is prefixed by a minus sign (−); and,
the name of an argument which can be used in both modes is prefixed by a question mark (?). Example. The inset for
between/3 (p. 41) says that the first two arguments of between/3 are for input only while the third one can be used for
input or output (depending on whether the predicate is used to test or to generate values thereof).

Arity. The number of arguments of a predicate, or more generally, of a compound term. Example. The term
parents of(F, M, joe) has arity 3.

Atom. A constant value which is assigned to a variable. Example. Strings starting with a lower case character such
as joe .

Backtracking. A way of finding values of the variables in a predicate such that this succeeds. This is accomplished
by traversing the associated search tree using Depth First search.

Binding. Assignment of a term as a value to a variable.

Body of a clause. The conjunction of the goals which have to be satisfied for the head of the clause to be ’true’.

Bound variable. A variable which has been assigned a value.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

180

Appendix C: Glossary

Clause. A fact or a rule in the database.

Closed World Assumption. Any goal that cannot be inferred from the database is assumed ’false’. Therefore,
the negation of such a goal will succeed.

Cut (!). A built-in predicate for ’freezing’ the assignment of values to variables in goals to the left of the cut.
Variables in goals to the right will be assigned new values on backtracking.

Database. The collection of all facts and rules loaded in memory.

Declarative reading. A program (a predicate) is viewed as a collection of declarative assertions about the problem
to be solved.

Difference list. A way of representing a list as a ’difference’ of two lists. Implicitly, its use involves unification and
is equivalent to the accumulator technique.

Fact. A clause with no body. More precisely, a clause whose body is assumed true.

Failure. A predicate is said to fail if its truth value inferred from the database is ’false’.

Free variable. A variable with no value assigned to it.

Functor. The name of a predicate, or more generally, the name of a compound term. Example. In parents of(george,

susan, joe) the functor is parents of .

Goal. An atom or a compound term which will be assigned a truth value by the Prolog system.

Ground term. A term with no free variables in it, i.e. a one where all variables are bound.

Head of a clause. The part of a clause which follows from the conjunction of the other goals of the clause, the body.

Head of a list. The first entry if we use the square bracket notation. The first argument if we use the dot (.)
functor to denote lists.

Higher order predicate. A predicate which uses another predicate by expecting in one of its arguments the
name of this predicate; or, which defines or modifies another predicate. Example. The built-in predicate bagof/3 is a
higher order predicate of the former kind as it uses the predicate named in its second argument. unfold/3 (see Fig. 3.9,
p. 97) is a higher order predicate of the latter kind as it modifies the definition of the predicate named in its first argument.

Instantiation. The assignment of a value to a variable.

List. It is a recursively defined built-in binary predicate with the dot functor (.). Its second argument is either the
empty list or a list. The user friendly notation uses square brackets to denote lists.

Predicate. A Prolog structure for representing an n–ary relation. Example. The ternary relation parents of/3 is a
relation on (i.e. a subset of) the Cartesian product C = People×People×People. A triplet in C which can be inferred
to satisfy the relation parents of/3 is said to succeed; otherwise it is said to fail.

Predicate Calculus. PC is a system for formalizing arguments with a view to establishing their validity. It is
an extension of Propositional Calculus using predicates, constants and variables which are universally or existentially

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

181

Appendix C: Glossary

quantified.

Predicate. The collection of clauses whose heads have the same functor.

Propositional Calculus. PC is the simplest system for formalizing arguments with a view to establishing their
validity. Its smallest units are the sentence letters that are assigned the values ’true’ or ’false’. These then are strung
together with connectives according to certain rules to form well–formed formulae. Finally, the latter are built up to
argument forms; PC is concerned with establishing the validity of these.

Recursion. Defining a predicate in terms of itself.

Rule. An assertion that a certain goal, the head of the clause, is ’true’ provided that all the goals in its body are ’true’.

Success. A predicate is said to succeed if it can be inferred from the database.

Switch. A predicate argument which can take two values only. Used as a programming tool.

Tail. The latter part of a list: the list comprising all entries except its first entry.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Prolog Techniques

182

Appendix C: Glossary

Tail recursion. A tail recursive clause defines a predicate in terms of itself where the predicate is called as the last

goal in the body.

Term. The most general data object in Prolog. It can be one of the following: a constant, a variable, or a compound
term.

Unification. A pattern matching algorithm returning a set of values assigned to the variables of two terms such that
these become equal. The assignment is most general in that any other such assignment can be obtained by specialization
of the variables after unification.

Variable. A named location in the memory which may be assigned a value.

http://bookboon.com/

